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CHALLENGES AND CONSTRAINTS FOR CONSTRUCI1NG CURRICULUM 

Kaye StacC;y 

University of M'lboume 

This paper describes some of the broad lessons on curriculwn which have emergedfrom 'The 

. Cognitive and Unguistic Demands of Learning To Use Algebra", a research projectfocussing on 

students' understandings of algebraic notation. Much of the current curriculwn in number and 

algebra is designed principally to support algorithm development, whether skills or concept based. 

As technology increasingly frees us from an algorithm-driven curriculwn, this should be replaced by 

experiences which expand children's conceptions of numbers and the operations of them. To learn 

algebra, students need experiences which assist them to become alert to multiple meanings and to 

explicitly recognise processes. Teachers need to address students' expectations of notation systems. 

The importance of building a curriculum on what children know is widely recognised. 

Children construct new knowledge and patterns of thinldng when new experiences interact with 

prior knowledge and thinking. A major challenge for mathematics education today is to build into 

curriculum practice the insights into children's ways of thinldng that have emerged from research 
over the past two decades. In this paper, some of the broad lessons on curriculum which have 
emerged from the research project ''The Cognitive and Linguistic Demands of Learning To Use 

Algebra" will be des~bed. This work has been carried out jointly with Dr Mollie MacGregor and 

was funded by the Australian Research Council. The research focussed on students' understanding 

and use of algebraic notation. It highlights the need for students to develop a much deeper 

understariding of the properties of numbers and their operations than is generally the case. 

The first part of the paper outlines how algebra depends on thinking that is alert to multiple 

meanings and where proces.ses are explicitly recognised. Then I report some of the expectations that 

students have of algebraic notation that it does not meet, because of the very restricted set of ideas 

that it can represent. A further challenge to curriculum construction is the mismatch between many 

students' concepts of number operations and the broact conceptions required for algebra. Finally, 

some new emphases for curriculum are briefly mentioned. 

DEVELOPING UNCOMMON SENSE 

To do well in mathematics, students need to have a strong everyday common sense about 

their work. They need to feel an intuitive understanding about number and space and the effects of 

operating on them. A lot of the work of school mathematics, particularly as emphasised in recent 

years, is properly directed to this end. However, in learning algebraic notation, students have to be . 
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able to step beyond the realms of everyday, intuitive thinking arid deal with a formal system. 

Balancing the emphasis in school mathematics of these two types of thinking is a central challenge 
! 

for school mathematics. I 
Intuitive thinking is characterised by Fischbein (1987) as immediate cognition, where the 

sense is obtained from the elements and context involved. The meaning of a statement can often be 

constructed by common sense and knowing what the elements in the sentence are. There is an 

immediate, intuitive sense, for example, to a statement containing the words "dog", "man", "bite", 

"hospital". In most intuitive arithmetic operations, there is some direct meaning available at every 

stage, so for example, it is easier to understand division by repeated subtraction where at any stage 

you can say "I had 300 and now 1 have taken away four lots of 50 and more 50's can still be taken 

away" than it is to understand long division. A further characteristic of intuitive thinking, possibly 

related to its immediacy, is that mental procedures are often carried out without the person 

consciously being able to describe what has been done. This is a phenomenon well-documented in 

a variety of settings (e.g. Gurova, 1969 and also see below), that is easy to overlook when 

interviewing children or trying to analyse written reports of thinking. 

In contrast, for using algebraic notation students' thinking needs to be quite different They 

very often have to be alert to the possibilities of multiple meanings, without obvious clues from 

context to prompt them. The meaning of a statement often depends on the syntax rather on the 

elements and there may be no context to guide. Whereas in primary school arithmetic students can 

usually be guided intuitively by the size of the numbers involved and the sense of what the answer 

would be when using algebra, students need to be explicit about the procedures they are to carry 

out, not about the answers they get Algebraic notation is centrally concerned with describing 

procedures. Finally, although there must be an overall sense to the algebraic procedure, there may 

be intennediate steps (e.g. in equation solving) which cannot readily be translated back in a 

meaningful way to the problem situation from which it arose. Some contrasts between the two 

modes of thinking are illustrated in the examples below. The data is drawn from a series of written 

tests and interviews involving large numbers of students in Years 7 to 11, from a variety of schools 

across socio-economic groups principally in Victoria. 

Firstly we have had in our tests several items which have looked at reading and 

comprehension of quantitative English with simple vocabulary. Sample problems were to find the 

dose for a child from a medicine label and to select flights and trains from timetables. In these tasks, 

we were able to conclude that very few students (perhaps no more than 2% at Year 10 across a 

variety of schools) have problems in identifying and using information located in forms and tables. 

These results were markedly better than those of a large national survey of adult literacy on similar 

questions (MacGregor & Stacey, 1994; Wickert, 1989). 
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However, when attention needs to be given to word order or syntax many students made 

mistakes. For example, item MATCH gives a drawing of a match and underneath gives the 

instruction "The match is 2 cm shorter than the line. J:?raw the line". An appropriate space is 
I 

indicated for drawing the line. This item is consistenily badly done. Many students draw a line 2 cm 

shorter than the match, not vice versa. However, when this item appeared as the last in a series of 

other similar items (e.g. "Draw a line 1 cm shorter than the match".), students were prompted to 

think about the possible multiple meanings involved and read with careful attention to the syntax. 

Many more students were correct. A similar result has been observed with a standard algebra item. 

Success rates for students choosing an equation to correspond with the statements: 

"ill a class there are six more boys than girls. If we write p for the number of girls and 

s for the number of boys, which of the following equations are correct?" 

were considerably improved when the item was preceded by a question which asked whether it was 

appropriate to add the 6 onto the number of boys or girls. In this case, we contend that the mental 

model that students form intuitively (without the prompt) for comparison items such as these, leads 

students to write the reversed equation (MacGregor & Stacey, 1993a), whereas the prompting 

forces more students to an examination of the multiple possibilities and a conscious choice to be 

made. It has been found that students' performance on reading items which require attention to 

syntax and word order puts a ceiling on their performance in algebra (MacGregor & Stacey, in 

press). 

Another instance where openness to multiple meanings may be involved is in the use of 

brackets. Items where students had to put in brackets were consistently very poorly done at all 

schools. However a short teaching intervention was very effective. It focussed on the possible 

alternative meanings with and without brackets and raised success rates in one school from 25% 

before the teaching to 70% six months later. The success rate later dropped back to 60% , indicating 

that practice is important 

1HE NEED FOR EXPLICIT AWARENESS OF OPERATIONS 

Children with a good intuitive sense of number can often find correct answers without being 

able to say what they have done. It is not that students don't have the vocabulary or grammar, but 

probably that the mental processing is not occurring in a verbal way. This has immediate 

consequences for learning algebra, where the notation is powerful because it expresses operations 

explicitly in both general statements and general methods. Several of our test items have asked 

students to express in words and symbols patterns in tables of integer values of linear functions. 

Even amongst the students who showed that they "knew" what the relationships were by calculating 

difficult numerical values, a quarter could not describe the rules they used verbally and nearly a half 

were not able to describe them algebraically (MacGregor & Stacey, 1993b). 
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Equally striking was data which compared students' ability to use algebraic notation with 

their understanding of mathematical relationships expressed graphically. In one of our tests given 

twice to 22 Year 10 students, most were able to pick ~ graph which showed the relationship between 

x and y corresponding to " I buy x bags of peanuts c6sting y cents each and the total cost is 600 

cents" yet only 20% could write any correct equation linking x and y. Students understand far more 

than they can say, but being able to read and write algebraic notation will remain important because 

I . it will be an essential link into using new mathematical software tools. 
I 

WHAT ALGEBRA CAN AND CANNOT SAY 

Students draw upon their previous experiences with a variety of different fonnal and 

infonnal codes to interpret and write algebraic expressions. We, and others, have observed that 

when they write algebraic expressions, students draw analogies with alphabetic codes (so that H is 

8, H + 10 is 18 or Rand y - 1 is x), with codes where juxtaposition (conjoining) means addition (so 
3x is 3+x in the same way as 3 ~ is 3 + ~), with the writing of shorthand notes (so that letters are 

thought to stand for words) and with units of measurement (so that in a question where the variable 

is denoted by x, an x is added to all the answers as a sort of unit). These and other 

misunderstandings of the meaning of letters are extensively discussed in the research literature, as is 

the limited understanding of the equals sign as a signal simply to work something out. However, 

our work show that the students' misunderstandings of algebraic notation are much more pervasive, 

involving the operations as well and an expectation that all mathematical ideas can be written in 

algebra, just as all ideas can be indicated in a written note. 

Many students use a symbol system which looks superficially like algebra but in fact has 

quite different meanings, as a sort of personal shorthand to record ideas in an ad hoc way. I first 

want to stress the very ad hoc nature of many students' writing of algebra. Although they have 

derived their ideas from written codes that they have previously experienced, we have found very 

few instances of students consistently using non-standard interpretations. Instead they swap 

between codes, responding to visual and other clues - would a "y" go in that position in an 

equation?, do answers usually look like this? In one study (Stacey & MacGregor, in press), we 

looked at the incidence of the conjoining error (where students write ab instead of a+b) in various 

tasks. The conjoining error is believed by some researchers to be highly significant because of its 

relationship to "acceptance of lack of closure", an indicator of cognitive growth. We found that 

hardly any students used conjoining for addition consistently and for addition alone. There wa,s 

considerable variation in the incidence of conjoining errors from question to question, ranging from 

none at all in fonnulating a simple equation to 3% for simple equation solving to about 15% when 

Year 10 students transposed a difficult equation. Students do not apply consistent but wrong laws to 
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write algebraic notation. Instead, many simply seemed to put relevant numbers and symbols 

together on the page in a way that superficially looked like the algebra they were used to seeing. 

The possibility that a symbol system that look1 superficially like algebra being mistaken for 

algebra was brought home to me when 1 was told of a Year 11 Chemistry student who was puzzled 

by the formula Ca(N~h. He asked his teacher "do you clear the brackets first or multiply by the 

calcium"? Then 1 read of Antoine Lavoisier, the chemist who showed that combustion was better 

explained by oxygen than by phlogiston. Before he was guillotined in the French Revolution, he 

established the modern system of naming compounds after their constituent elements and also 

popularised the use of formulae and equations in chemistry. In introducing these, he said "1 have 

constituted formulae of a kind that could at first be taken for algebraic formulae, but do not have the 

same object ... .! beg you to consider the formulae [ .. ] only as simple annotations, the object of 

which is to ease the workings of the mind" (P35). Lavoisier was worried about the possibility that a 

system which looked superficially like algebra would be misinterpreted as algebra. The objects 

(atoms, not numbers) and the meaning of the operations (conjoining meaning "already chemically 

combined" and "+" meaning "being chemically combined") are all quite different from the meanings 

of algebra although the symbols look very similar, as the Year 11 student recognised. 

One of the difficulties for teaching algebra is that it is hard to explain how things that look 

the same can have quite different meanings and it is also hard for a teacher to detect when a student 

writes a symbolic statement with an irregular interpretation. When students in Year 10 were asked 

to write algebraically a relationship between x and y, given the information in Figure 1, the success 

rates were very low. Some of the ways in which students tried to say that y is equal to x+4 were: 

x=y4 (said by the student to say "with the x, for the y you put 4 on it"), 

x = I + 4y (you start with x equal to I and add 4 to get y) 

x+4y (you take x and add 4 to get y) 

x=3y ("x equals three digits y" - there are 3 integers between an x and its y value). 

Other students (and the same students at other times) saw the most salient features of the 

table to be hat the x values increase by 1 and the y values increase by. 1 (but start at a different 

number). They wrote expressions such as x+ 1 = Y + 1 (every time you add one to x you have to 

add one to y) and Ix = 5y (x starts at I and y starts at 5). These students have perceived and have 

tried to express patterns algebraically but do not realise what a restricted system elementary school 

algebra is. As teachers we become familiar with the ways of getting around the restrictions and so 

stop seeing them. We promote algebra as the language to describe patterns. We probably also stop 

even noticing the patterns in the tables that we cannot express algebraically. 

One of the most popular approaches to algebra, and the one which is endorsed in the 

National Statement (Australian Education Council, 1991), is to offer students tables of integer 

values (such as in Figure 1) or sequences of geometric designs and get them to write an a}.gebraic 



6 

statement of the relationships. Unfortunately the most salient "successor" features of the table in 

Figure 1 cannot be written in the notation the students are learning. Instead students write 

expressions which superficially look algebraic but my meant to convey very different meanings as 
the examples above show. One teaching strategy that may help here is to use frequently examples of 

linear relationships which are not presented so that the "successor" relationship stands out. Many 

everyday instances of linear functions (cost of petrol purchase as a function of number of litres 

bought, telephone bill as a function of number of calls) are suitable to use because they do not 

naturally arise in a sequence. However, the more general point is that students have to learn, and 

teachers have to see afresh, how few of the patterns and relationships that are observed in a 

mathematical situation can be directly written algebraically. 

I ~ I~ I ~ 
Figure 1: Table illustrating relationship to be written algebraically. 

THE NEED FOR BROADER CONCEPTS OF OPERATIONS 

One of the obstacles to students describing verbally or algebraically the rules that they use in 

calculation is that they do not have a well integrated understanding of the four arithmetic operations 
in all their various guises. At the most simple level, some of the Year 10 students interviewed used 

descriptions based on counting rather than on addition, such as "there's three numbers missing" 

and "in between x and y there is four" to describe y = x+4 (MacGregor & Stacey, 1993b). 

In arithmetic, especially with whole numbers, there are often many possible paths for 

working out problems. For example solutions to a question such as SCHOOL FETE (Figure 2) 

from a typical class of students beginning algebra would probably show all variations given in the 

Figure. In contrast, there are no significant variations on the algebraic solution to a parallel task. If 

the class brings D items per day to reach a target of T items, then it will take T/(5D) weeks. 

Teachers therefore need to work with beginning algebra students to expand their ability to recognise 

the applicability of operations (especially multiplication and division) in a wide range of cognitively 

and structurally different problems. Conversely, children need to learn to see a unity amongst the 

various ways in which operations are carried out. It is important that they see that subtraction of 

whole numbers, fractions and decimals share the same properties although they are carried out 

differently with pencil and paper. 
Within the context of whole numbers, the only incentive to move towards using a more 

sophisticated method (e.g. multiplication or division instead of repeated addition) is overall ease of 

solving the problem. A child will only perceive a method to be easy if the method of calculation 

its~lf is felt to be easy and reliable. For this reason, regular use of calculators could be very 
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beneficial, as it can help focus children's attention on the easiest operation to use, not the easiest 

way to actually do the calculation. Some evidence from the Calculators in Primary Mathematics 

project (a joint project ofDeakin and Melbourne Univ~rsities) supports this proposal. Grades 3 and 

4 children who had used calculators throughout their khooling were better able to choose an 

appropriate operation in a word problem than other children· from the same schools who had not 

regularly used calculators (Stacey & Groves, 1994). 

SCHOOL FETE 

Our class is collecting items for the white elephant stall at the 
school fete. If we collect an average of ten items per day, how 
many weeks will it take us to collect 500 items? 

Trial Addition Repeated Subtraction 

10 50 
10 50 
10 50 
10 50 

1Q.. 50 
50 each 50 

week 50 
50 
50 
50 

500 
Answer = 10 weeks 

500 
-50 

450 
-50 

400 
-50 

350 
-50 

300 
-50 

250 

Trial Multiplication 
10 x 5 = 50 
50 x 10 = 500 

250 
-50 
200 
-50 
150 
-50 
100 
-50 
50 

-50 
o 

Figure 2. Different ways of solving one problem. 

Division 
10 items each day 
is 50 items each week 

10 
50 500 

Answer = 10 weeks 

Division 
50 

10)500 

50 days 
= 10 weeks 

TWO FURTHER SUGGESTIONS FOR TEACHING AND CURRICULUM 

(i) Increase the intellectual content of beginning algebra examples. 

We have seen algebra worksheets for Year 8 that could easily be done by children in Grade 1 

if x was replaced by a place holding box. We have watched teachers teach equation solving using 

equations that are trivial to guess (and could be guessed by Grade 1 children). In fact, it is years 

before some students meet an algebraic equation that cannot be easily guessed. This is partly 

because of the total ban on numbers other than positive whole numbers and partly because of the 

tot~ ban on looking at any equations not of the form ax+b = c. The use of examples like these 
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sends strong messages to students that mathematics is useless mumbo jumbo, a complicated way of 

doing things that are easy. Student learn to stop watching their teachers and then when they need 

algebraic methods (e.g for an equation of the form ,+b = cx + d) they haven't learned anything. 

(ii) Re-examine the purpose of concept development in nwnber. 
Particularly in primary schools, teachers generally give good attention to the need for children to 

build abstract ideas on concrete experiences. However, the main thrust of this concept development 

is towards preparing for written algorithms. Decisions not to do algorithms (for example, for 
division of fractions and decimals in primary schools) have meant in practice that nothing is done 

about extending concepts of division to incorporate numbers that are not whole. As technology 

increasingly frees us from an algorithm-driven curriculum, an important challenge for mathematics 

educators is to create curriculum experiences which help students construct deep conceptions of how 

numbers and operations work and how they interact with each other. Students' success in this area 

will detennine the extent to which they are able to tap into the power that algebra as a symbolic 

system, and through it a range of new mathematical tools,can provide. 
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